胡纯严,胡良平.因果中介效应分析的关键技术和多向分解方法[J].四川精神卫生杂志,2022,35(5):407-411.Hu Chunyan,Hu Liangping,Key technology and multi-directional decomposition method of the causal mediation effect analysis[J].SICHUAN MENTAL HEALTH,2022,35(5):407-411
因果中介效应分析的关键技术和多向分解方法
Key technology and multi-directional decomposition method of the causal mediation effect analysis
投稿时间:2022-09-11  
DOI:10.11886/scjsws20220911002
中文关键词:  因果中介效应  效应识别  最大似然估计  自助法  多向分解
英文关键词:Causal mediation effect  Effect identification  Maximum likelihood estimation  Bootstrap method  Multi-way decomposition
基金项目:
作者单位邮编
胡纯严 军事科学院研究生院北京 100850 100850
胡良平* 军事科学院研究生院北京 100850
世界中医药学会联合会临床科研统计学专业委员会北京 100029 
100029
摘要点击次数:
全文下载次数:
中文摘要:
      本文目的是介绍因果中介效应分析的5项关键技术和效应成分多向分解方法。5项关键技术的内容如下:①因果中介效应的识别;②因果中介效应分析的回归方法;③最大似然估计;④总效应与各种成分效应的估计;⑤自助法估计。多向分解方法包括3个双向分解、2个三向分解和1个四向分解。本文通过一个实例,借助SAS构建包含协变量和交互作用项的因果中介效应模型,对因果中介效应分析中的总效应进行双向分解、三向分解和四向分解,并对输出结果进行解释。
英文摘要:
      The purpose of this paper was to introduce five key techniques and the multi-directional decomposition methods of effect components in the analysis of causal mediation effects. The contents of the five key technologies were as follows: ① identification of causal mediation effect; ② regression method of causal mediation effect analysis; ③ maximum likelihood estimation; ④ estimation of total effect and various component effects; ⑤ estimation by bootstrap method. The multi-directional decomposition methods included 3 bidirectional decompositions, 2 three-directional decompositions and 1 four-directional decomposition. Through an example, a causal mediation effect analysis model including covariates and interaction terms was constructed with the help of SAS, bidirectional decomposition, three-directional decomposition and four-directional decomposition were carried out for the total effect in the causal mediation effect analysis, and the output results were explained.
查看全文  查看/发表评论  下载PDF阅读器
关闭