周亚新,邵园,王圆龙,林亚男,张梁英,王永军.静息态脑电在阿尔茨海默病诊断中的价值[J].四川精神卫生杂志,2023,36(4):313-319.Zhou Yaxin,Shao Yuan,Wang Yuanlong,Lin Ya'nan,Zhang Liangying,Wang Yongjun,Value of resting state electroencephalogram in the diagnosis of Alzheimer's disease[J].SICHUAN MENTAL HEALTH,2023,36(4):313-319
静息态脑电在阿尔茨海默病诊断中的价值
Value of resting state electroencephalogram in the diagnosis of Alzheimer's disease
投稿时间:2023-03-27  
DOI:10.11886/scjsws20230327006
中文关键词:  阿尔茨海默病  脑电图  认知功能  相关分析
英文关键词:Alzheimer's disease  Electroencephalography  Cognitive function  Correlation analysis
基金项目:
作者单位邮编
周亚新 安徽医科大学精神卫生与心理科学学院安徽 合肥 230032
深圳市康宁医院广东 深圳 518020 
518020
邵园 深圳市康宁医院广东 深圳 518020 518020
王圆龙 安徽医科大学精神卫生与心理科学学院安徽 合肥 230032
深圳市康宁医院广东 深圳 518020 
518020
林亚男 安徽医科大学精神卫生与心理科学学院安徽 合肥 230032
深圳市康宁医院广东 深圳 518020 
518020
张梁英 深圳市康宁医院广东 深圳 518020
济宁医学院精神卫生学院山东 济宁 272067 
272067
王永军* 安徽医科大学精神卫生与心理科学学院安徽 合肥 230032
深圳市康宁医院广东 深圳 518020 
518020
摘要点击次数:
全文下载次数:
中文摘要:
      背景 阿尔茨海默病(AD)诊断仍面临很大挑战,脑电图检查具有便携、无创的优势,脑电诊断AD是目前的研究热点。目的 探讨静息态脑电用于AD诊断的价值,为临床上AD的早期识别提供参考。方法 回顾性分析2019年5月-2022年5月在深圳市康宁医院老年精神障碍科住院的AD患者(n=59)临床资料,以同期在该院门诊检查的健康老年人作为对照组(n=54)。收集8通道静息态脑电数据,使用快速傅里叶变换(FFT)计算患者在α、β、θ、δ频段脑电的绝对功率值和α/θ绝对功率比值。采用简易精神状态评价量表(MMSE)和蒙特利尔认知评估量表(MoCA)评定患者的认知功能。采用Spearman相关分析考查患者脑电变量与MMSE和MoCA评分的相关性。基于选定的脑电及临床资料,建立预测AD的Logistic回归模型,采用受试者工作特征(ROC)曲线下面积(AUC)评估模型性能。结果 AD患者右额极(F4)、左右侧额极(F7、F8)θ绝对功率均高于健康对照组,差异均有统计学意义(t=-2.844、-2.825、-3.014,P<0.05或0.01);AD患者左右前额极(Fp1、Fp2)、左右额极(F3、F4)、左右侧额极(F7、F8)α/θ绝对功率比值均低于健康对照组,差异均有统计学意义(t=2.081、2.327、3.423、2.358、3.272、2.445,P<0.05或0.01)。Spearman相关分析显示,MMSE评分与α绝对功率、β绝对功率和α/θ绝对功率比值均呈正相关(r=0.206、0.288、0.372,P<0.05或0.01)。MoCA评分与β绝对功率和α/θ绝对功率比值均呈正相关(r=0.201、0.315,P<0.05或0.01),与θ绝对功率呈负相关(r=-0.218,P<0.05)。脑电组合预测AD的模型ROC曲线AUC=0.882(95% CI:0.820~0.943),灵敏度为0.966,特异度为0.673。综合变量模型预测能力最强,ROC曲线AUC=0.946(95% CI:0.905~0.986),灵敏度为0.948,特异度为0.873。结论 AD患者静息态脑电与认知功能相关。静息态脑电在AD诊断中可能具有重要价值,其中θ绝对功率和α/θ绝对功率比值可能与AD的相关性最强。
英文摘要:
      Background The diagnosis of Alzheimer's disease (AD) still faces great challenges, and the advantage of electroencephalogram (EEG) diagnosis lies in its portable and non-invasive nature, so the EEG diagnosis of AD has occupied an important place in clinical research.Objective To evaluate the value of resting state EEG for AD diagnosis, and to provide references for early recognition of AD in clinical practice.Methods Clinical data of AD patients (n=59) in an Inpatient Geriatric Psychiatry Unit of Shenzhen Kangning Hospital from May 2019 to May 2022 were retrospectively analyzed, and healthy elderly individuals attending outpatient clinics at the hospital during the same period were enrolled as control group (n=54). Eight-channel resting state EEG data were acquired, and the absolute power values in the α, β, θ and δ frequency bands and the α/θ ratio were obtained and calculated using Fast Fourier Transform (FFT). Cognitive function assessments of patients were done by Mini-Mental State Examination (MMSE) and Montreal Cognitive Assessment (MoCA). Spearman correlation analysis was used to examine the correlation between EEG findings and MMSE and MoCA scores of AD patienrs. Logistic regression prediction model for AD was built using currently available EEG and clinical variables, and the model performance was assessed using the receiver operating characteristic (ROC) curve and the area under curve (AUC).Results The θ-band absolute powers in the right mid-frontal (F4) and mid-lateral (F7, F8) regions were higher in AD patients than those in healthy controls, with statistically significant difference (t=-2.844, -2.825, -3.014, P<0.05 or 0.01). The absolute powers of α/θ ratio in prefrontal (Fp1, Fp2), mid-frontal (F3, F4) and mid-lateral (F7, F8) regions showed a notable reduction in AD patients compared with healthy controls, with statistical difference (t=2.081, 2.327, 3.423, 2.358, 3.272, 2.445, P<0.05 or 0.01). Spearman correlation analysis denoted that MMSE score was positively correlated with the absolute powers of α-band, β-band and α/θ ratio (r=0.206, 0.288, 0.372, P<0.05 or 0.01). MoCA score was positively correlated with β absolute powers and α/θ ratio (r=0.201, 0.315, P<0.05 or 0.01), and negatively correlated with θ absolute power (r=-0.218, P<0.05). ROC curve revealed an AUC of 0.882 (95% CI: 0.820~0.943), a sensitivity of 0.966 and a specificity of 0.673 for the AD prediction model based on EEG variables, while the prediction model for AD using comprehensive variables achieved better predictive efficacy, reaching an AUC, sensitivity and specificity of 0.946 (95% CI: 0.905~0.986), 0.948 and 0.873, respectively.Conclusion Resting state EEG of AD patients is correlated with cognitive function, and are of great value in the diagnosis of AD, with θ absolute power and α/θ ratio in EEG being the most strongly correlated with AD.
查看全文  查看/发表评论  下载PDF阅读器
关闭