胡良平.变量变换回归分析(II)———拟合近似呈均匀分布资料的方法[J].四川精神卫生杂志,2019,32(3):197-202.,Regression analysis based on the variable transformation(Ⅱ)——the methods of fitting the data with almost uniform distribution[J].SICHUAN MENTAL HEALTH,2019,32(3):197-202
变量变换回归分析(II)———拟合近似呈均匀分布资料的方法
Regression analysis based on the variable transformation(Ⅱ)——the methods of fitting the data with almost uniform distribution
  
DOI:10.11886/j.issn.1007-3256.2019.03.002
中文关键词:  曲线回归  非迭代惩罚B-样条变换  光滑样条变换  节点  光滑参数
英文关键词:Curve regression  Noniterative penalized B - spline transformation  Smoothing spline transformation  Knot  Smoothing parameter
基金项目:国家高技术研究发展计划课题资助(2015AA020102)
作者单位
胡良平 军事科学院研究生院世界中医药学会联合会临床科研统计学专业委员会 
摘要点击次数:
全文下载次数:
中文摘要:
      【摘要】 本文利用 SAS帮助数据库中的一个数据集 sashelp.enso,介绍对自变量进行样条变换后的曲线回归分析方法?在SAS/STAT的 TRANSREG过程中,涉及到六种样条变换方法,分别为:B-样条变换?B-样条基函数变换?单调 B-样条变换?非迭代惩罚B-样条变换?迭代光滑样条变换?非迭代光滑样条变换?获得的结论是:在确保 R2≈0.7且回归模型尽可能精简的条件下,“非迭代惩罚B-样条变换”与“迭代光滑样条变换”两种方法是以上六种方法中最好的曲线回归建模方法,这两种方法的拟合效果几乎完全相同?
英文摘要:
      This paper was to introduce the approaches of curve regression analysis through the spline transformation of the independent variable by means of using the data set named sashelp. enso in the data base of SAS HELP. In the TRANSREG procedure of the SAS /STAT, six approaches of the spline transformation were involved as below: B - spline transformation, B - spline base transformation, monotonic B - spline transformation, non - iterative penalized B - spline transformation, iterative smoothing spline transformation, non - iterative smoothing spline transformation. The conclusion were as follows: under the conditions of ensuring the R- square to be equal to 0. 7 approximately and the regression model streamlining as much as possible, the fourth and fifth approach mentioned above were the best and they had almost the same fitting effects.
查看全文  查看/发表评论  下载PDF阅读器
关闭