胡纯严,胡良平.合理进行多重Logistic回归分析——结合平均处理效应分析[J].四川精神卫生杂志,2022,35(6):512-517.Hu Chunyan,Hu Liangping,Reasonably conduct the multiple Logistic regression analysis combined with the average treatment effect analysis[J].SICHUAN MENTAL HEALTH,2022,35(6):512-517
合理进行多重Logistic回归分析——结合平均处理效应分析
Reasonably conduct the multiple Logistic regression analysis combined with the average treatment effect analysis
投稿时间:2022-11-13  
DOI:10.11886/scjsws20221113005
中文关键词:  逆概率权重  潜在结果均值  平均处理效应  Logistic回归模型  倾向性评分模型
英文关键词:Inverse probability weight  Potential outcome mean  Average treatment effect  Logistic regression model  Propensity score model
基金项目:
作者单位邮编
胡纯严 军事科学院研究生院北京 100850 100850
胡良平* 军事科学院研究生院北京 100850
世界中医药学会联合会临床科研统计学专业委员会北京 100029 
100029
摘要点击次数:
全文下载次数:
中文摘要:
      本文目的是介绍如何结合平均处理效应分析,合理地进行多重Logistic回归分析的方法。第一,介绍了与平均处理效应分析有关的4个基本概念。第二,介绍了平均处理效应分析中的核心内容,即6种估算方法。第三,通过一个假设的药物临床试验实例,介绍了如何用SAS软件进行分析的全过程,内容如下:①采用传统的多重Logistic回归分析;②采用倾向性评分模型计算逆概率权重;③分别采用6种估算方法估计潜在结果均值和平均处理效应。
英文摘要:
      The purpose of the paper was to introduce how to reasonably carry out multiple Logistic regression analysis combined with the average treatment effect analysis. Firstly, it introduced 4 basic concepts related to the average treatment effect analysis. Secondly, it presented the core contents in the average treatment effect analysis, that was, six estimation methods. Thirdly, through a hypothetical drug clinical trial example, it gave the whole process of how to use SAS software for the analysis. The contests were as follows: ① the traditional multiple Logistic regression model was used for the analysis; ② the propensity score model was used to calculate the inverse probability weights; ③ six estimation methods were used to estimate the potential outcome mean and the average treatment effect.
查看全文  查看/发表评论  下载PDF阅读器
关闭