Wang Hanxiao,Kang Aijia,Zhao Yubao,Zhao Furong,Jiang Xiaojiang,Hao Fengyi,Tang Xiangdong,Advances in machine learning in suicide prediction on online social platforms[J].SICHUAN MENTAL HEALTH,2021,34(6):580-584
Advances in machine learning in suicide prediction on online social platforms
DOI:10.11886/scjsws20210521001
English keywords:Machine learning  Suicide  Prediction  Review
Fund projects:重庆市科技传播与普及专项(项目名称:慢性失眠症网络自助式整合心身干预技术的应用,项目编号:cstc2019kpzx-kphdA0014);重庆市科卫联合医学科研项目(项目名称:矛盾性失眠简易诊断指标筛选及远程心理治疗研究,项目编号:2021MSXM228)
Author NameAffiliationPostcode
Wang Hanxiao The First People’s Hospital of Chongqing Liangjiang New Area Chongqing 401120 China
Renmin University of China Beijing 100872 China 
100872
Kang Aijia The First People’s Hospital of Chongqing Liangjiang New Area Chongqing 401120 China
University of Toronto Toronto M5S 2E8 Canada 
Zhao Yubao Hangzhou Anken Medical Technology Co. Ltd. Hangzhou 311121 China 311121
Zhao Furong The First People’s Hospital of Chongqing Liangjiang New Area Chongqing 401120 China 401120
Jiang Xiaojiang Army Medical Center of PLA Chongqing 400042 China 400042
Hao Fengyi The First People’s Hospital of Chongqing Liangjiang New Area Chongqing 401120 China
Sleep Medicine Center West China Hospital Sichuan University Chengdu 610041 China 
610041
Tang Xiangdong Sleep Medicine Center West China Hospital Sichuan University Chengdu 610041 China 610041
Hits:
Download times:
English abstract:
      This article systematically reviews the research results related to the machine learning based suicide ideation prediction on social networking platforms, so as to provide references for group and individual suicide prediction. This article will address the current states (issues of algorithm accuracy and efficiency, privacy leakage and stigma) and limitations of machine learning based suicide prediction on different platforms (light blogging, acquaintance social platforms, forums, picture and video sharing applications and clinical databases).
View Full Text   View/Add Comment  Download reader
Close