Hu Chunyan,Hu Liangping,Key technology and multi-directional decomposition method of the causal mediation effect analysis[J].SICHUAN MENTAL HEALTH,2022,35(5):407-411
Key technology and multi-directional decomposition method of the causal mediation effect analysis
DOI:10.11886/scjsws20220911002
English keywords:Causal mediation effect  Effect identification  Maximum likelihood estimation  Bootstrap method  Multi-way decomposition
Fund projects:
Author NameAffiliationPostcode
Hu Chunyan Graduate School Academy of Military Sciences PLA China Beijing 100850 China 100850
Hu Liangping* Graduate School Academy of Military Sciences PLA China Beijing 100850 China
Specialty Committee of Clinical Scientific Research Statistics of World Federation of Chinese Medicine Societies Beijing 100029 China 
100029
Hits:
Download times:
English abstract:
      The purpose of this paper was to introduce five key techniques and the multi-directional decomposition methods of effect components in the analysis of causal mediation effects. The contents of the five key technologies were as follows: ① identification of causal mediation effect; ② regression method of causal mediation effect analysis; ③ maximum likelihood estimation; ④ estimation of total effect and various component effects; ⑤ estimation by bootstrap method. The multi-directional decomposition methods included 3 bidirectional decompositions, 2 three-directional decompositions and 1 four-directional decomposition. Through an example, a causal mediation effect analysis model including covariates and interaction terms was constructed with the help of SAS, bidirectional decomposition, three-directional decomposition and four-directional decomposition were carried out for the total effect in the causal mediation effect analysis, and the output results were explained.
View Full Text   View/Add Comment  Download reader
Close