基于网络模型的OSA与非OSA人群BMI-血氧饱和度-睡眠体位-心率变异性的差异研究
A study on the differences in BMI-oxygen saturation-sleep position-heart rate variability between OSA and non-OSA populations based on a network model
投稿时间:2025-03-03  修订日期:2025-06-03
DOI:
中文关键词:  阻塞性睡眠呼吸暂停  睡眠监测  BMI  心率变异性  网络分析
英文关键词:Obstructive sleep apnea  Polysomnography  Body Mass Index  Heart rate variability  Network analysis
基金项目:
作者单位地址
罗瑶 西南医科大学附属医院
精神疾病基础与临床泸州市重点实验室 
四川省泸州市江阳区西南医科大学附属医院心身医学科住院部
王安林 西南医科大学附属医院精神疾病基础与临床泸州市重点实验室 宜宾市第二人民医院 
王婷婷 西南医科大学附属医院
精神疾病基础与临床泸州市重点实验室 
梁雪梅 西南医科大学附属医院
精神疾病基础与临床泸州市重点实验室 
向波 西南医科大学附属医院
精神疾病基础与临床泸州市重点实验室 
刘可智* 西南医科大学附属医院
精神疾病基础与临床泸州市重点实验室 
四川省泸州市江阳区西南医科大学附属医院心身医学科住院部
摘要点击次数:
全文下载次数:
中文摘要:
      背景 我国确诊为阻塞性睡眠呼吸暂停(OSA)的患病人数持续攀升,已造成严重的疾病负担。然而既往关于OSA影响因素(如肥胖、睡眠体位等)的研究多为横断面研究,难以揭示多因素间的动态交互机制,制约了个体化干预方案的制定。目的 通过探究非OSA人群与OSA人群间的体质量指数(BMI)-血氧饱和度-睡眠体位-心率变异性(HRV)网络模型的差异,为OSA的早期诊断及干预提供参考。方法 纳入2022年7月12日—2023年10月11日至西南医科大学附属医院进行睡眠监测的成年被试,以AHI=5次/h次作为诊断阈值,分为对照组和OSA组,分别构建BMI-血氧饱和度-睡眠体位-HRV网络并进行比较。结果 对照组与OSA组的网络模型整体边线权重(P=0.55)及整体强度(P=0.28)比较,差异均无统计学意义。两个网络模型特定节点间的连接强度(如“最低血氧饱和度”与“BMI”、“俯卧位”、“心搏间期平均值”之间)、特定节点的中心性指标[“平均血氧饱和度”、“最低血氧饱和度”、“立位呼吸暂停低通气指数(AHI)”、“右侧卧位AHI”、“平均心率”]比较,差异均有统计学意义(P<0.05)。结论 非OSA人群与OSA人群在特定因素(如体位、心率、血氧饱和度)之间存在差异,这些差异可能为OSA的早期预测提供一定的理论基础。
英文摘要:
      Background The number of people diagnosed with obstructive sleep apnea (OSA) in China continues to rise, which has caused a serious disease burden. However, most of the previous studies on the influencing factors of OSA (such as obesity and sleep position) have been cross-sectional studies, which are difficult to reveal the dynamic interaction mechanism between multiple factors, which restricts the formulation of individualized intervention programs. Objective By exploring the differences in body mass index (BMI)-oxygen saturation-sleep position-heart rate variability (HRV) network models between non-OSA and OSA populations, this paper provides a reference for the early diagnosis and intervention of OSA. Methods Adult subjects who went to the Affiliated Hospital of Southwest Medical University for sleep monitoring from July 12, 2022 to October 11, 2023 were included, and AHI=5 times/h was used as the diagnostic threshold, and they were divided into control group and OSA group, and BMI-oxygen saturation-sleep position-HRV networks were constructed and compared, respectively. Results There was no significant difference in the overall edge weight (P=0.55) and overall strength (P=0.28) of the network model between the control group and the OSA group. There were significant differences in the connection strength between the two network models (e.g., between “minimum oxygen saturation” and “BMI”, “prone position”, “mean interval”) and centrality index of specific nodes [“mean oxygen saturation”, “minimum oxygen saturation”, “upright apnea-hypopnea index (AHI)”, “right decubitus AHI”, and “mean heart rate”)] (P<0.05). Conclusion There are differences between the non-OSA population and the OSA population in specific factors (e.g., body position, heart rate, oxygen saturation), and these differences may provide a theoretical basis for the early prediction of OSA.
  查看/发表评论  下载PDF阅读器
关闭